Главная :: Архив статей :: Гостевая :: Ссылки

Наши друзья

Архивное дело: частный архив, поиск документов в архивах стран СНГ и Европы, генеалогия, составление родословных, архивные справки

Помощь сайту

WEB-Money:
R935344738975

Наша кнопка

XArhive - архив научно-популярных и просто интересных статей

Партнеры

Главная страница > Архив новостей

На коллайдере зафиксировано важное для "поимки" бозона Хиггса событие

На Большом адронном коллайдере зарегистрировано рождение пары Z-бозонов — событие, важное для "поимки" бозона Хиггса. Об этом пишет портал Physics World.

Z-бозоны — это элементарные частицы, которые являются переносчиками слабого взаимодействия (наряду с электромагнитным, сильным и гравитационным входит в число четырех фундаментальных физических взаимодействий). Z-бозоны могут образовываться из других элементарных частиц, например, из бозона Хиггса. Согласно Стандартной модели — наиболее общепринятой на сегодня теории, объясняющей физические законы, этот бозон "отвечает" за наличие массы у других частиц. До сих пор ученые не получили надежных фактических подтверждений его существования.

Бозон Хиггса может образовываться в ходе столкновений протонов в ускорительном кольце БАК. Он должен распадаться на ряд других частиц (в частности, Z-бозонов), которые могут быть зарегистрированы детекторами коллайдера. Непосредственно Z-бозоны детекторы зафиксировать не могут из-за чрезвычайно короткого времени жизни этих элементарных частиц (около 3x10-25 секунды), однако они могут "поймать" мюоны, в которые превращаются Z-бозоны.

24 сентября 2010 года детектор БАК под названием CMS зарегистрировал рождение четырех мюонов. По характеристикам их движения (в частности, по отклонению в магнитном поле) ученые определили, что масса "породивших" их Z-бозонов составляет около 92 гигаэлектронвольта. Как отмечают ученые, одного подобного события недостаточно, чтобы делать определенные выводы — для того, чтобы доказательно говорить о рождении бозона Хиггса, необходимо зарегистрировать множество событий рождения пар Z-бозонов.

Недавно физики, работающие на американском коллайдере Тэватрон, смогли уточнить границы, в которых лежит масса бозона Хиггса. Ученые показали, что масса этой частицы не находится в пределах от 158 до 175 гигаэлектронвольт. Эти, а также другие результаты, полученные на Тэватроне, стали причиной для поднятия вопроса о продлении работы ускорителя. Изначально планировалось, что эксперименты на Тэватроне будут завершены в сентябре 2011 года, однако сейчас рассматривается возможность трехгодичного продления.

Сверхточную физическую установку сбросили с высоты 150 метров

Ученые разработали схему опыта, который позволяет изучать "работу" гравитации с очень высокой степенью чувствительности. Коротко его суть такова — экспериментальную установку сбрасывают с башни высотой 146 метров, после чего проводят измерения. Статья физиков опубликована в журнале Science. Вкратце о работе пишет портал Physics World.

Цель авторов работы — проверить, не изменяются ли характеристики гравитационного притяжения на дистанциях, сравнимых с типичными межатомными расстояниями. Общая теория относительности Эйнштейна постулирует, что никакого изменения происходить не должно, однако некоторые исследовательские коллективы пытаются экспериментально подтвердить или опровергнуть этот тезис.

Одной из удобных систем для проверки "работы" гравитации на атомном уровне является конденсат Бозе-Эйнштейна. Этим термином называют вещество, охлажденное практически до температуры абсолютного нуля (разница не должна превышать миллионных долей градуса). При этом все атомы вещества переходят в минимальные квантовые состояния, и поведение всей системы можно описывать по законам квантовой механики — можно сказать, весь массив вещества превращается в единую квантовую систему.

Если разделить такой "суператом" на две части, а потом соединить их, то из возникающей характерной интерференционной картины можно "вытащить" особенности гравитационного взаимодействия двух половинок. Для проведения такого эксперимента необходимо, чтобы на экспериментальную установку не влияли внешние воздействия, которые могут исказить результаты наблюдений (если отклонения в гравитационном взаимодействии и существуют, то они должны быть чрезвычайно слабыми).

Внешние воздействия можно исключить, проводя эксперимент на орбите. Авторы новой работы предложили иной вариант — они создали установку, способную создавать конденсат Бозе-Эйнштейна (что является весьма непростой задачей), и сбрасывали ее с башни высотой 146 метров, так как в состоянии свободного полета на систему практически не действуют внешние силы. Ученые выяснили, что за одну секунду свободного полета конденсат Бозе-Эйнштейна в установке изменяет свое положение на три миллиметра. Дальнейшие исследования показали, что это смещение было вызвано не гравитационными взаимодействиями, а влиянием магнитных полей в установке. В дальнейшем авторы рассчитывают усовершенствовать свою установку и устранить мешающие магнитные поля, а также приспособить ее для работы в космосе.

Коллеги исследователей положительно отозвались об их эксперименте — несмотря на то что пока физики не провели собственно интерференционного эксперимента, созданная ими система позволяет измерять очень незначительные изменения параметров.

Главная :: Архив статей :: Гостевая :: Ссылки